تبلیغات
ایرانیکا - تولد تا مرگ ستارگان (2)

تجهیزات

آرشیو موضوعی

آخرین پست ها

اخبار خودرو

آرشیو

صفحات جانبی

لیست آخرین رویدادها

کتاب و نشریات

← آمار وبلاگ

  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :

نمایشگاه ها | همایش ها | کنفرانس ها | سمینارها

سایت صنعت ایران

تولد تا مرگ ستارگان (2)

گدازش ستارگان

 انرژی مهیب ستارگان در فرایندی به نام گدازش هسته ای ایجاد می شود. این فرایند زمانی آغاز می شود که دمای هسته ستاره در حال شکل گیری به 1 میلیون K برسد. یک ستاره از دل یک ابر بسیار بزرگ که به آرامی در چرخش است و تقریبا به طور کامل از عناصر شیمیایی هیدروژن و هلیوم تشکیل شده است، به دنیا می آید. این ابر همچنین ممکن است حاوی اتمهای دیگر عناصر و غباری از ذرات میکروسکوپی باشد.

به اقتضای نیروی گرانش، این ابر شروع به منقبض شدن می کند و در نتیجه کوچکتر می شود. با جمع شدن ابر، سرعت چرخش آن بیشتر می شود درست همانطور که سرعت یک اسکیت باز که بر روی یخ به دور خود در حال چرخیدن است، با جمع کردن بازوانش بیشتر و برعکس با باز کردن بازوان کمتر می شود. لایه های خارجی ابر یک دیسک چرخان را ایجاد می کنند. لایه های داخلی به شکل یک توده کروی که همچنان در حال انقباض است تبدیل می شوند.

ماده در حال انقباض گرمتر می شود و فشار آن نیز بیشتر می گردد. این فشار تمایل زیادی به خنثی کردن نیروی گرانشی که عامل انقباض است، دارد. در نهایت، سرعت انقباض بسیار کاهش پیدا می کند. در قسمت داخلی توده در این هنگام جنین ستاره یا پیش ستاره به وجود می آید. پیش ستاره یک جرم توپی است که نه دیگر ابر است و نه هنوز ستاره شده است. پیرامون پیش ستاره پوسته ای از گاز و غبار است که لایه های بیرونی توده نخستین می باشند.

 

ترکیب هسته ای

 هنگامیکه دمای مرکز پیش ستاره به اندازه کافی زیاد شد، گدازش هسته ای آغاز می شود. گدازش هسته ای ترکیب دو هسته اتمی و تشکیل یک هسته بزرگتر است.

یک اتم کامل دارای پوسته ای خارجی متشکل از یک یا چند ذره به نام الکترون است که بار الکتریکی منفی حمل می کند. در درون و مرکز اتم، هسته آن وجود دارد که تقریبا همه جرم اتم را شامل می شود. ساده ترین هسته که رایجترین شکل عنصر هیدروژن در عالم می باشد، متشکل از یک ذره به نام پروتون است. پروتون بار مثبت الکتریکی حمل می کند. همه هسته های دیگر دارای یک یا چند پروتون و یک یا چند نوترونند. نوترون هیچ بار الکتریکی حمل نمی نماید و یک ذره خنثی است در نتیجه هسته همه اتمها، بار مثبت الکتریکی دارند. البته همه اتمها به تعداد پروتونهای موجود در هسته دارای الکترون می باشند در نتیجه یک اتم کامل، خنثی است. 

در هر صورت، تحت دما و فشار بسیار بسیار شدید مرکز پیش ستاره، اتمها الکترونهای خود را از دست می دهند. به اتمهای الکترون از دست داده، یون می گویند و به ترکیبی از الکترونهای آزاد و یونها، پلاسما می گویند.

گفتیم که در درون پیش ستاره، اتمها همه الکترونهای خود را از دست می دهند و هسته های لخت با سرعت بسیار زیادی به یکدیگر می رسند. در شرایط عادی، موادی که دارای بار الکتریکی یکسانند، یکدیگر را دفع می کنند با اینحال اگر دما و فشار در درون پیش ستاره به اندازه کافی زیاد شود، می تواند بر قدرت دفع هسته ها فائق آمده و آنگاه گدازش صورت می گیرد. دانشمندان معمولا از اصطلاح "سوختن" به جای "گدازش" استفاده می کنند اما باید توجه داشت که گدازش هسته ای، چیزی کاملا  متفاوت با اشتعال در معنای عام آن است.

 


تبدیل جرم به انرژی

 وقتی دو هسته اتمی با هم ترکیب شوند، مقدار کمی از جرم آنها به انرژی تبدیل می شود؛ بنابراین جرم هسته جدید، از حاصلجمع جرم دو هسته ای که با هم ترکیب شدند کمتر است. آلبرت اینشتین رابطه جرم و انرژی را کشف کرده و آن را در قالب معادله E=mc2 بیان کرد. این معادله بیانگر مقدار انرژی آزاد شده از ترکیب ذرات است. E به معنای انرژی، m به معنای مقدار جرم  و c سرعت نور است.

سرعت نور برابر است با 299.792 کیلومتر در ثانیه. این مقدار واقعا عدد بزرگی است و چنانچه آنرا در معادله بگذاریم متوجه می شویم که با گداختن جرم بسیار کمی از ماده، می توان انرژی مهیبی به دست آورد. برای مثال با سوخت هسته ای کامل 1 گرم ماده، 90 تریلیون ژول انرژی به دست می آید. این مقدار انرژی تقریبا برابر است با انرژی آزاد شده در انفجار 20.000 تن TNT . انرژی بمب هسته ای آمریکا که در سال 1945، در جریان جنگ جهانی دوم ، به هیروشیمای ژاپن  اصابت کرد معادل انفجار 12.000 تن TNTبود.

 

نابودی هسته های سبک

 در مرکز پیش ستاره، هنگامیکه دما به 1 میلیون K می رسد، گدازش هسته آغاز می شود. شروع این گدازش باعث تغییر و از میان رفتن هسته های سبک می شود. از جمله هسته لیتیوم 7، که شامل سه پروتون و چهار نوترون است. در فرایندی که این هسته شرکت دارد، یک هسته هیدروژن با آن ترکیب شده و هسته لیتیوم 7 را به دو قسمت تقسیم می کند. هر قسمت شامل یک هسته هلیوم 4 (دو پروتون و دو نوترون) است. به هسته هلیوم 4، ذره آلفا نیز گفته می شود.

 

گدازش هیدروژن

 پس از نابودی هسته های سبک، پیش ستاره همچنان به انقباض خود ادامه می دهد. در نهایت، دمای هسته به حدود 10 میلیون K می رسد و در این هنگام سوختن هیدروژن آغاز می شود. با شروع گدازش هیدروژن، پیش ستاره به یک ستاره تبدیل می گردد.

در گدازش هیدروژن، چهار هسته هیدروژن با هم ترکیب شده و یک هسته هلیوم 4 را به وجود می آورند. دو شکل کلی برای انجام این عمل وجود دارد. 1) واکنش پروتون-پروتون ( P-P ). 2) چرخه کربن-نیتروژن-اکسیژن ( CNO ).

واکنش P-P می تواند به چندین روش شامل چهار مرحله زیر رخ دهد:

1-    ترکیب دو پروتون. در این مرحله دو پروتون با هم برخورد می کنند و سپس یکی از پروتونها با آزاد کردن پوزیترون بار مثبت خود را از دست می دهد.  این پروتون علاوه بر پوزیترون یک ذره خنثی به نام نوترینو نیز آزاد می نماید.

پوزیترون ضد ماده الکترون است. جرم آن دقیقا برابر با جرم الکترون می باشد اما بر خلاف الکترون دارای بار مثبت است. با آزاد شدن پوزیترون، پروتون به نوترون تبدیل می شود. در نتیجه هسته جدید حاوی یک پروتون و یک نوترون است. نام این ترکیب دوترون می باشد.

2-  پوزیترون آزاد شده ممکن است با یک الکترون برخورد کند. با برخورد ماده و ضد ماده، هر دوی آنها از بین می روند و تنها چیزی که باقی می ماند دو پرتوی گاما است.

3-  دوترون حاصل شده با یک پروتون دیگر تبدیل می شود و هسته هلیوم 3 شکل می گیرد. بر اثر این ترکیب نیز پرتوی گاما ایجاد می شود.

4- هسته هلیوم 3 با هسته هلیوم 3 دیگری ترکیب شده و علاوه بر تشکیل یک هسته هلیوم 4 دو پروتون نیز آزاد می شوند.

در چرخه CNO هسته کربن 12 شرکت دارد. این هسته شامل 6 پروتون و 6 نوترون است. در حین چرخه، این هسته به نیتروژن 15 (7 پروتون و 8 نوترون)  و اکسیژن 15 (8 پروتون و 7 نوترون) تبدیل می شود. و در آخر چرخه این دو هسته بار دیگر به هسته کربن 12 تبدیل می گردند.

 

گدازش دیگر عناصر

 هلیوم 4 می تواند در فرایند گدازش به کربن 12 تبدیل شود، البته به این منظور دمای مرکز باید تا حدود 100 میلیون K افزایش پیدا کرده باشد. این دمای بالا ضروریست چرا که هسته هلیوم  به انرژی زیادی برای فائق آمدن بر انرژی دافعه ذرات همبار نیازمند است. هسته هلیوم دارای دو پروتون است بنابراین میزان انرژی دافعه در آن چهار برابر انرژی دافعه بین دو پروتون است.

سوخت هلیوم به سوخت سه-آلفا مشهور است چراکه این هسته با سه ذره آلفا  ترکیب می شود و یک هسته کربن را ایجاد می نماید. سوخت هلیوم همچنین هسته اکسیژن 16 (8 پروتون و 8 نوترون) و نئون 20 (10 پروتون و 10 نوترون) تولید می کند.

در دمای مرکزی حدودا 600 میلیون K ، کربن 12 می تواند سودیوم 23 (11 پروتون و 12 نوترون)، منیزیوم 24 (12 پروتون . 12 نوترون) و تعداد بیشتری نئون 20 تولید نماید. البته ستارگان زیادی نمی توانند به این دمای مرکزی برسند.

با تولید شدن عناصر سنگین و سنگینتر در روند گدازش هسته ای، دمای لازم برای فعل و انفعالات بیشتر، افزایش می یابد. در دمایی معادل 1 بیلیون K ، اکسیژن 16 می توان سیلیکون 28 (14 پروتون و 14 نوترون)، فسفر 31 (15 پروتون و 16 نوترون) و سولفور 32 (16 پروتون و 16 نوترون) تولید نماید.

گدازش می تواند تا زمانیکه جرم هسته جدید از حاصلجمع جرم دو هسته ترکیب شده با هم کمتر است، انرژی تولید نماید. این روند تولید انرژی ادامه دارد تا زمانیکه هسته آهن 56 (26 پروتون و 30 نوترون) شروع به ترکیب شدن با هسته های دیگر می نماید. وقتی این اتفاق روی می دهد جرم هسته جدید از جرم دو هسته ترکیب شده اندکی بیشتر است. بنابراین این فرایند به جای تولید انرژی، مصرف انرژی دارد.

 

تکامل ستارگان

چرخه زندگی ستارگان سه الگوی کلی را دنبال می کند که به جرم آنها وابستگی دارد. 1) ستارگان پر جرم، که جرمشان از 8 برابر جرم خورشید بیشتر است. 2) ستارگان با جرم متوسط، که جرمشان از 5/0 تا 8 برابر جرم خورشید است. خود خورشید نیز در این دسته از ستارگان جای دارد.3) ستارگان با جرم کم، که جرمشان بین 1/0تا 5/0 جرم خورشید می باشد. اجرامی که جرم آنها از 1/0 جرم خورشید کمتر است هرگز به دمای مرکزی لازم برای شروع سوخت هیدروژن نمی رسند.

چرخه زندگی ستارگان منفرد از چرخه زندگی ستارگان دوتایی آسانتر است بنابراین نخست با چرخه زندگی ستارگان منفرد آغاز می کنیم. ضمنا از آنجائیکه اطلاعات ستاره شناسان درباره خورشید از هر ستاره دیگری بیشتر است لذا بحث چرخه ستارگان، از ستارگان با جرم متوسط آغاز می شود.

 

ستارگان با جرم متوسط

 ابری که در نهایت یک ستاره با جرم متوسط را تولید می کند، حدودا 100.000 سال به انقباض ادامه می دهد تا اینکه پیش ستاره را به وجود آورد. دمای سطح چنین پیش ستاره ای حدود 4000 K می باشد. درخشش آن ممکن است تنها چند برابر خورشید و یا چند هزار برابر خورشید باشد. این بستگی به جرم دارد.

ستاره تا میلیونها سال به انقباض خود ادامه می دهد. این انقباض ادامه خواهد داشت تا زمانیکه نیروی انرژیهای تولید شده در مرکز ستاره با نیروی گرانشی که باعث انقباض آن می گردد، به تعادل برسد. در این زمان، گدازش هیدروژنی در مرکز ستاره، همه انرژی آن را تولید می کند و ستاره وارد طولانی ترین دوره عمر خود که به آن رشته اصلی می گوییم، می شود.

هر ستاره ای، صرفنظر از جرم آن، که همه انرژی خود را از طریق گدازش هیدروژن در مرکز خود ایجاد کند، یک ستاره در رشته اصلی به حساب می آید.

مدت زمانیکه ستاره در این مرحله باقی می ماند به جرم آن بستگی دارد. ستارگان با جرم بیشتر، هیدروژن خود را با سرعت بیشتری می سوزانند در نتیجه زمان کمتری در این مرحله باقی می مانند. یک ستاره با جرم متوسط می تواند بیلیونها سال در این رشته باشد.

 

مرحله غول سرخ

 وقتی همه هیدروژن موجود در هسته یک ستاره با جرم متوسط به هلیوم تبدیل شد، ستاره به سرعت دستخوش تغییر می شود. به دلیل اینکه دیگر انرژی ناشی از گدازش در هسته ستاره تولید نمی شود، گرانش بار دیگر دست به کار شده و منجر به انقباض شدید ستاره می گردد. به دلیل این انقباض سریع، دما به شدت در مرکز و مناطق اطراف آن بالا می رود. با بالا رفتن دما، هیدروژن موجود در پوسته اطراف مرکز شروع به سوختن می کند. انرژی حاصل شده از این گدازش حتی از انرژی که قبلا در مرکز تولید می شد نیز بیشتر است. این انرژی مازاد، لایه های بیرونی ستاره را به شدت به بیرون هل می دهد در نتیجه ستاره تا حد بسیار زیادی بزرگ می شود.

با بزرگ شدن اندازه ستاره، لایه های بیرونی آن سرد می شوند، در نتیجه رنگ ستاره سرخ می گردد. از طرفی با بزرگتر شدن سطح ستاره، درخشش آن نیز بیشتر می شود. در این مرحله ستاره به یک غول سرخ تبدیل شده است.

 

مرحله شاخه افقی

 در نهایت، دمای مرکز تا حد 100 میلیون K می رسد یعنی دمای لازم برای آغاز فرایند سه – آلفا. 

با ادامه این فرایند، هسته ستاره بزرگتر می شود اما دمای آن کاهش می یابد. با کاهش این دما، از دمای لازم برای سوخت هیدروژن موجود در پوسته اطراف هسته نیز کاسته می شود. به دنبال آن، انرژی منتشر شده از این لایه نیز کم می شود و لایه های خارجی ستاره شروع به انقباض می نمایند. ستاره داغتر، کوچکتر و کم نورتر از زمانی می شود که یک غول سرخ بود. این تغییرات در یک دوره زمانی حدودا 100 میلیون ساله رخ می دهند.

در پایان این دوره، ستاره در مرحله شاخه افقی قرار می گیرد. این مرحله به دلیل خط نمایشگر وضعیت ستاره در نمودار H-R شاخه افقی نامیده می شود. ستاره به طور مداوم و پایدار هلیوم و هیدروژن می سوزاند بنابراین تغییر شایان ذکری در دما، ابعاد و درخشش آن روی نمی دهد. این مرحله تقریبا تا 10 میلیون سال به طول می انجامد.

 

مرحله غول جانبی

 هنگامیکه سوخت هلیوم موجود در هسته به اتمام رسید، هسته منقبض و در نتیجه داغتر می شود. فرایند سه –آلفا اینبار در پوسته اطراف هسته آغاز می گردد و گدازش هیدروژن در لایه های بعدی آن صورت می گیرد. با افزایش آهنگ تولید انرژی در پوسته ها، لایه های بیرونی ستاره منبسط  می شوند. ستاره بار دیگر به یک غول تبدیل می گردد اما اینبار آبی تر و درخشانتر از بار پیش.

هسته یک غول جانبی بسیار داغ و نیروی گرانش بر لایه های خارجی ضعیف می باشد. در نتیجه لایه های بیرونی در قالب باد ستاره ای از ستاره جدا می شوند. با جدا شدن هر لایه از ستاره، نوبت به لایه داغتری می رسد. در نتیجه باد ستاره ای مرتب قویتر می شود. جریانات جدیدتر و سریعتر بادهای برخاسته از سطح ستاره، با بادهای قبلی که هنوز در فضای اطراف ستاره پرسه می زنند، برخورد می کنند. در نتیجه این برخورد، یک پوسته متراکم گاز به وجود می آید که برخی از آنها با سرد شدن به غبار تبدیل می شوند.

 

مرحله کوتوله سفید

 ظرف چند هزار سال، غول جانبی بخار می شود. و گدازش در هسته متوقف می گردد. هسته مرکزی باعث روشن شدن پوسته های گازی اطراف خود می شود. با تلسکوپهای اولیه و بدوی که ستاره شناسان در سالهای 1800 برای رصد استفاده می کردند، این پوسته ها شبیه به سیارات به نظر می رسیدند به همین دلیل آنها این پوسته ها را ابر سیاره ای نامیدند. هنوز هم ستاره شناسان از همین عنوان قدیمی استفاده می کنند.

 یک ابر سیاره ای با بافت ظاهری غیر معمول که دلیل بروز آن نامشخص است. این عکس توسط تلسکوپ هابل تهیه شده است.

پس از محو شدن ابر سیاره ای، هسته باقیمانده به نام کوتوله سفید شناخته می شود. این نوع از ستارگان بیشتر حاوی کربن و اکسیژنند و دمای اولیه آنها حدود 100.000 K می باشد.

 

مرحله کوتوله سیاه

 از آنجائیکه کوتوله های سفید سوختی برای گدازش ندارند، با گذشت بیلیونها سال پیوسته سردتر می شوند و در نهایت به یک کوتوله سیاه، جرمی بسیار کدر، تبدیل می گردند. کوتوله سیاه نماد پایان چرخه زندگی یک ستاره با جرم متوسط است.

ستارگان با جرم زیاد، آنهاییکه جرمی بیش از 8 برابر جرم خورشید دارند، به سرعت شکل می گیرند و زندگی کوتاهی دارند. یک ستاره پر جرم ظرف 10.000 سال تا 100.000 سال از دل یک پیش ستاره شکل می گیرد.

این نوع ستارگان در رشته اصلی بسیار داغ و آبی رنگند. آنها 1000 تا 1 میلیون بار درخشانتر از خورشید می باشند و شعاع آنها تقریبا 10 برابر شعاع خورشید است. تعداد ستارگان پرجرم نسبت به ستارگان با جرم متوسط و ستارگان کم جرم کمتر است. با اینحال به خاطر درخشندگیشان از فواصل بسیار دور نیز قابل رصدند و به همین خاطر تعداد زیادی از آنها شناخته شده اند.

ستارگام با جرم زیاد، بادهای ستاره ای بسیار قوی دارند. یک ستاره با جرم 30 برابر خورشید می تواند 24 برابر جرم خورشید را پیش از آنکه از رشته اصلی خارج شود، به شکل باد منتشر نماید.

وقتی یک ستاره سنگین رشته اصلی را ترک می کند، سوخت هیدروژن در لایه های بیرون هسته آغاز می شود. در نتیجه شعاع این ستاره 100 برابر شعاع خورشید می شود. با اینحال از درخشش آن اندکی کاسته می شود. به دلیل اینکه در این مرحله ستاره تقریبا همان مقدار انرژی قبلی را از سطح بزرگتری منتشر می کند، دمای سطح آن کاهش می یابد. در نتیجه گرایش به سرخ ستاره بیشتر می شود.

با بزرگ شدن ستاره، دمای مرکز آن به 100 میلیون K یعنی دمای لازم برای آغاز فرایند سه-آلفا می رسد. پس از تقریبا 1 میلیون سال، سوخت هلیوم در مرکز به اتمام رسیده و نوبت به هلیوم موجود در لایه های بیرون هسته و هیدروژن موجود در لایه های بعد از آن می رسد. ستاره سنگین ما تبدیل به یک ابرغول سرخ درخشان می شود.

هنگامیکه انقباض هسته دمای آنرا به حد کافی افزایش می دهد، با سوختن کربن، نئون، سدیوم و منیزیوم تولید می شود. این مرحله تنها برای 10.000 سال ادامه می یابد. پس از آن فرایندهایی متوالی در هسته رخ می دهد. هر فرایند عناصر مختلفی را در بر می گیرد و مدت زمان کوتاهتری به طول می انجامد. وقتی عنصر جدیدی شروع به سوخت می کند، عنصر قبلی سوختن خود را در لایه های بالاتر سر می گیرد. نئون ترکیب شده و اکسیژن و منیزیوم تولید می کند. این فرایند حدودا 12 سال طول می کشد. سپس با سوختن اکسیژن، سیلیکون و سولفور تولید می شود. این فرایند حدودا 4 سال طول می کشد. در آخر با سوختن سیلیکون ، آهن تولید می شود. این فرایند تنها حدود 1  هفته دوام دارد.

تهیه و تنظیم : لنا سجادیفر 

سایت های علمی

لینکستان

دانستنیها

اخبار و مقالات علمی

درباره وبلاگ

مقالات فنی و مهندسی
زندگینامه دانشمندان
مطالب آموزشی
مطالب عمومی
داستان های زیبا
مقالات علمی
سخنان بزرگان
سخنان مشاهیر
مدیر وبلاگ : سایت ایرانیکا

لینکدونی

جستجو

نظرسنجی

  • کدام یک از موضوعات وبلاگ بیشتر مورد علاقه شماست؟








----- banner place -------

نویسندگان